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 Chem 309 Lectures 
 Fall '21 
 
 Lecture 1 
I. Introduction 

Many people talk about physical chemistry as if it was a group of isolated subjects - 

thermodynamics, kinetics, statistical mechanics, quantum mechanics and sometimes 

macromolecules, solids, surfaces and dynamic electrochemistry.  I prefer the view that all of it is 

connected by a central question. In my view, the central question in physical chemistry is “What 

happens to a system when energy flows into or out of it?”   

When we talk about different fields of physical chemistry we're just asking different 

questions about the disposition of the energy.  For example, our first topic will be 

thermodynamics.  The basic question of thermodynamics is “If you put energy into some system, 

what can happen and what can't happen?”  A couple of the limits of the questions that 

thermodynamics can address are that it deals only with macroscopic systems, and we can only 

ask what happens to a system we add energy to, not how these things happen.  Along the way to 

answering basic thermodynamic questions we have to establish answers to narrower questions like 

“If we have two substances, which is stabler?” or “When will a reaction occur spontaneously?”  

But the purpose of answering these questions is so that we can say what happens when we put 

energy into or take it out of a system. 

Our second subject will be classical kinetics.  In classical kinetics, the critical question is 

“For a given system in a given state, how fast will a reaction occur?”  Questions that we’ll ask 

along the way will include, “If I increase the energy what happens to the speed of the reaction?”, 

“How many steps occur in going from reactant to product, and what are they?”, and “Is there a 
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way to change the nature of the steps so that the reaction goes faster?” 

In Chemistry 310 we will begin with our third subject, which will be quantum mechanics.  

The question here is what happens to a molecule when you put energy into it.  Does it react or 

does it not?  Does it vibrate?  Do its electrons move differently?  Along the way, we have to answer 

questions like “How do electrons move?”  “How much energy does it take to move an electron?” 

“Can they move any way they want?” “Is one molecule stabler than another? Why?”  But again, 

all this is so we know what happens when we put energy into a molecule. 

Our fourth subject, which we will touch on only briefly, is Statistical Mechanics.  This 

subject is a tool to take results of the quantum or classical mechanics of individual molecules and 

apply them to bulk matter.  The first stage in studying this subject is to derive the results of 

thermodynamics from the quantum mechanics of individual molecules.  Why?  Because 

thermodynamics doesn't tell you anything about the microscopic details of what goes on in a 

system when you add energy, just what can and can't happen.  A theory of bulk matter derived 

from models of individual molecules can tell you much more, like how a change occurs or how a 

system evolves when it is not in equilibrium.  So we are developing tools that will allow us to ask 

questions about how things happen when we put energy into a molecule or solid or gas.  In other 

words, we’re developing tools that allow us to ask mechanistic questions. 

This is the topic of what would be our final subjects if there were a sufficient amount of 

time, the kinetic theory of gases, and chemical dynamics.  For different systems and to differing 

degrees of sophistication, they ask the question, “When energy is put into a system, what happens 

between the beginning and the end of the resulting process?”  Does the energy stay put until 

reaction occurs or does it move all around the molecule?  How much energy does it actually take 
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for the reaction to occur?  How fast will energy leave a molecule? 

So we see that in all these areas of physical chemistry, energy is a common thread. 

A number of you are here as BMB majors, and many of you will be either curious or 

skeptical about the relevance of this material for your studies and research.  Let me briefly attempt 

to address this issue.  This is somewhat easier from the biochemistry point of view, since many 

biochemistry questions are answered either by studying the rates or energetics of biological 

processes, and therefore a deeper understanding of kinetics and thermodynamics is directly 

relevant to your work.  A deeper understanding is important if you wish to treat energetics or 

kinetics quantitatively because the way these subjects are treated in general chemistry does not 

allow you to account for the intrinsic complexity of biological systems.   

Many of you are in the molecular biology end of things, and do not study quantitative 

energetics or kinetics.  In this case the main relevance of the course is in developing a strong 

qualitative understanding of the parameters that drive the processes that you are interested in, and 

that determine how quickly they can occur.  For example, understanding entropic effects on DNA 

transcription requires a subtle understanding of the nature of entropy and of the factors that 

increase or decrease entropy.  Understanding the appropriate temperature ranges for various 

processes depends on understanding why and how heat can be effective in driving a process. 

The approach that I prefer to take to the material in this class is to focus on very basic and 

fundamental principles, because a deep understanding of these can be applied to any system.  I am 

happy to talk to any of you about thermodynamics and kinetics and the way that they relate to the 

systems you are most interested in. 

Let’s begin our discussion of thermodynamics.  In thermodynamics, we put energy into a 
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macroscopic system, and try to figure out what can and can't happen.  At this point in your 

chemical educations, you should have a qualitative idea of the meaning of energy and system, but 

we will have to make these ideas more precise.  Let's begin by talking about the state of a system.  

We must begin by defining our terms.  A system is the part of the universe you are interested in.  

Everything else is the surroundings.  As an example, when I first came here, I did my experiments 

by shining light on molecules suspended in crystals of rare gases.  I might define as my system the 

rare gas crystal, the molecules I was studying, and the photons, or particles of light, and as the 

surroundings the substrate the crystal rests on, the refrigerator which cools the rare gas to the low 

temperature necessary to freeze it, the chemistry building the experiment sits in, the state the 

building is in, and for sake of completeness, the rest of the universe, both known and unknown.  A 

biochemical example of this could define a system as a mitochondrion, and the surroundings the 

rest of the cell, or it could be an enzyme plus the ATP supplying its energy as the system, or 

alternatively the system could be the enzyme, with the ATP as part of the surroundings.  Choice 

of system and surroundings depends on the nature of the calculation we wish to do, and the specific 

question we are asking about the processes we are studying. 

In order to distinguish the system from the surroundings we must have a boundary.  In the 

example of my research, one of the possible boundaries would be the interface between the cesium 

iodide substrate and the rare gas crystal.  Different types of systems are defined by the nature of 

the boundary separating the system from the surroundings.  An isolated system has a boundary 

that prevents any interaction between the system and the surroundings.  In particular this means 

no transfer of energy, and no transfer of matter.  An open system has a boundary that allows matter 

to be transferred.  A closed system has a boundary that allows no transfer of matter. Q: WHAT IS 
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THE DIFFERENCE BETWEEN A CLOSED SYSTEM AND AN ISOLATED SYSTEM?  If the transfer of energy  

between the system and the surroundings via the mechanism of heat is prevented, we have an 

adiabatic system.  Two more types of systems are homogenous systems and heterogeneous 

systems.  A homogenous system has uniform properties throughout.  A heterogeneous system 

will have more than one phase. Q: WHAT DOES THE DISTINCTION BETWEEN HOMOGENEOUS AND 

HETEROGENEOUS SYSTEMS HAVE TO DO WITH BOUNDARIES? Q: CAN YOU THINK OF A SITUATION IN 

WHICH A SYSTEM HAS NO INTERNAL BOUNDARIES, YET IS NOT HOMOGENEOUS? (Non-equilibrium) 

Note that the choice of a boundary can be defined by a natural feature of a system, such as a cell 

wall, or the wall of a thermos.  However, the boundary choice can also be hypothetical, and chosen 

simply for simplicity in calculations. 

If we add energy to our system, it will presumably make some change in the system, so 

we need to be able to describe our system quantitatively.  We do this by specifying measurable 

properties of the system, like density, pressure, volume, temperature and mass.  We divide all of 

these properties into two groups, extensive properties and intensive properties.  Extensive 

properties are ones that depend on the size of the system.  Intensive properties are ones that are 

not dependent on the size of the system.  To distinguish between intensive and extensive 

properties I like to do the following thought experiment. Pretend we have a container that is 

filled with gas.  The gas has a temperature, T; a pressure p; a volume, V; and a mass, m.  Now 

we take an infinitely thin sheet of glass and divide the container in two.  What is the volume on 

each side?  The mass?  Since dividing the size of the container in two divided each of these 

parameters in two, volume and mass are extensive.  Now, what is the temperature on each side?  
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The pressure?  Since changing the size had no effect on the temperature or pressure, these 

variables are intensive. 

As always, the amount of substance in a system is given by the number of moles of each 

of the components of the system.  If an extensive property is divided by the number of moles in 

the system, an intensive property is obtained.  For example, volume V, is an extensive property.  

V/n, called molar volume and symbolized by V  or Vm, is an intensive property.  IN THIS EXAMPLE, 

IS VOLUME EXTENSIVE OR INTENSIVE?  IS MOLE NUMBER EXTENSIVE OR INTENSIVE?  WHAT 

GENERALIZATION MIGHT WE MAKE ABOUT THE RATIO OF TWO EXTENSIVE QUANTITIES?  CAN WE 

THINK OF OTHER EXAMPLES? 
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Lecture 2 

We’ll continue by asking the question “What is the state of a system, and how do we 

measure it?”  To do this we need to talk about equilibrium first.  A limitation of thermodynamics 

is that it deals only with states in equilibrium.  Q:  WHAT IS A STATE OF EQUILIBRIUM?  CAN 

SOMEONE STATE THAT WITH AN EQUATION?  This means that we will limit our descriptions of 

systems to systems in equilibrium.  A system that is at equilibrium is said to be in a definite state.  

This means that each of its measurable properties is not changing with respect to time.  This is 

exactly the same as our mathematical description of equilibrium. The measurable properties of a 

system are called state variables. 

What I’m going to say next is very important. When a system is in equilibrium, its 

properties depend only on the values of its state variables, and not on the history of the 

system.  In other words, it is important only where you are and not how you got there, and not 

where you were before.  Therefore, changes in state variables can be determined by knowing 

only the initial state and the final state of the system, and do not require any knowledge of the 

way the system was transformed from the initial to the final state. 

A very practical question that we might ask is “How many state variables need to be 

specified to completely define the state of a system?”  We've mentioned five state variables already 

but the potential number of measurable properties depends only on the ingenuity of the 

experimentalist. ASK FOR LIST OF MEASURABLES (GROUPS). How many of this potential multitude 

of measurables is necessary to uniquely define a system?  In thermodynamics, this usually turns 

out to be quite a small number.  For the simplest systems, (ones with only one component and 

which have a charge of zero) one extensive property and two intensive properties are enough.  It 
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is important to understand that this means that once these three properties are fixed, the values of 

all other measurable properties of the system are completely determined. As systems grow more 

complicated more properties are necessary to uniquely define the system.  These additional 

properties are most frequently properties that define the composition of a system or the charge of 

a system. 

Let’s talk in more detail about two of our state variables, temperature, and pressure.  

Pressure is defined as force per unit area.  This implies that there are two different ways to 

increase pressure – one is to increase the force exerted on an area, and the other is to decrease the 

area on which a force is exerted.  This latter is the reason that someone can step on your foot with 

flat heeled shoes and cause only moderate pain, but the same person stepping on your foot with a 

spike heel will easily break a bone. 

The simplest measurements of pressure are made with either a manometer or a barometer.  

A similar principle is used in both instruments.  A manometer is a U shaped tube half filled with 

mercury or some other low vapor pressure liquid, and then evacuated on one side.  [Draw] If both 

sides are evacuated, then the only force is due to the weight of the mercury on each side, which is 

equal, since the mercury can flow until the forces equalize.  If gas is added to one side, it exerts a 

force that moves the mercury on the gas side down, and on the vacuum side up.  The mercury stops 

moving when the pressure due to the difference in heights of the mercury columns equals the 

pressure exerted by the gas. Therefore, the pressure exerted by the gas is proportional to the 

difference in heights of the two mercury columns.  To simplify matters, the pressure can be 

defined in terms of the difference in heights of mercury columns in a manometer.  The oldest 

pressure unit still found in texts is the mm of mercury.  However, there’s a problem with using 
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heights of mercury columns as units of pressure.  Q:  CAN ANYONE TELL ME WHAT THE PROBLEM 

IS?  Because of this, the mm of mercury (mm Hg) has been replaced by the Torr, which is exactly 

equal to one mm of mercury at 25°C.  Since a Torr is a small unit, another useful unit is the 

Atmosphere.  One atmosphere (atm) is exactly equal to 760 Torr. 

Our preferred pressure units will be neither mm Hg or Torr, but SI units.  The basic units 

in the SI system are the kilogram, abbreviated Kg, for mass; the meter, abbreviated m, for length; 

the second, abbreviated s, for time; the ampere, abbreviated A, for electrical current; the Kelvin, 

abbreviated K, for temperature; the candela, abbreviated cd, for luminous intensity, and the mole, 

abbreviated mol, for amount of substance.  All other units are derived from these basic units.  

For example, the SI unit of force is the Newton, N, 1 kg m s-2.  Since p = f/area, the SI unit of 

pressure is N/m2 and is called the Pascal, Pa.  1 Atm = 101,325 Pa.  It is useful to have an SI unit 

of pressure closer to 1 atm so another common pressure unit is 1 Bar = 105 Pa. Therefore 1 atm = 

1.01345 Bar. 

We now turn to temperature, the most abstract of the state variables.  The question we’ll 

now try to address is “What is temperature and how do we measure it?”  It’s actually easier to 

answer the first question after addressing measurement.  The measurement of temperature is called 

thermometry.  A basic law of thermodynamics underlies thermometry.  It is called the Zeroth Law 

of Thermodynamics.  It concerns thermal equilibrium. We define thermal equilibrium this way.  

Suppose we bring two objects (for example, a thermometer and hot water) into contact in such a 

way that heat can flow between them.  Some observable physical property will change due to the 

heat flow (such as the height of the fluid in the thermometer).  If we wait long enough, the physical 

properties stop changing.  Then we say that the two objects have reached a state of thermal 
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equilibrium. 

The Zeroth law of thermodynamics says suppose you have three objects, A, B, and C.  If 

A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then A is also in thermal 

equilibrium with C.  Let’s look at how we can use the zeroth law of thermodynamics to establish 

a temperature scale. 

First, we observe some object like an alcohol filled tube.  We notice that when this tube is 

in contact with a hot object, the alcohol expands, and when it is in contact with a cold object it 

contracts.  Adding or removing heat changes the height of the alcohol, so we propose that the 

height of the fluid changes due to a variable which we will call temperature, which is somehow 

related to heat flow (we will refine this definition of temperature).  We need to invent this variable 

because there is no other measurable variable that can always account for the changes in property 

of matter that occur when heat flows into or out of a system. 

Now we put the tube in boiling water, and mark the height of the alcohol when thermal 

equilibrium is achieved.  We say that the height of the alcohol is representative of the temperature 

of boiling water.  Now say we have another hot object, say a chunk of metal.  We place the tube 

on this piece of metal and let it come to thermal equilibrium.  If the height of the alcohol at thermal 

equilibrium is the same as that when it is in boiling water, then the zeroth law tells us that we can 

say that this property called temperature is the same for both. 

But what is temperature itself?  Dictionaries would define it as the measure of hotness or 

coldness in an object, which is a frustratingly circular definition, since in this case the definition 

of temperature is tied to the measurement of temperature.  A macroscopic definition might be “a 

macroscopic equilibrium property of matter that predicts the direction of heat flow”, since we 



 
 

11 

know that the direction of heat flow is from hotter to colder.”  On a molecular basis, we can define 

temperature as a variable proportional to the average internal kinetic energy in a macroscopic 

sample at equilibrium.  Note that the internal kinetic energy is the kinetic energy contained in an 

object at rest.   

Note the necessity of the equilibrium condition.  Temperatures (and in fact, other state 

variables) are not defined for systems that are not in equilibrium.  An interesting example of a 

nonequilibrium system that illustrates the difficulty in defining temperatures for such systems is 

called a supersonic free jet.  This is a device invented in the 1960’s to allow experiments to be 

conducted on gas phase systems at temperatures below 10K.  It works by expanding a gas from a 

reservoir containing gases at high pressures (20 atm or greater) through a pinhole into a vacuum.  

As the gas shoots out of the pinhole, some of the random motions that constitute its temperature 

are converted into directed flow, cooling the gas.  If such a gas consists of atoms, like He gas, the 

system achieves equilibrium and the temperature is well defined.  However, if the gas contains 

molecules, as in a mixture of He and benzene, then there are different classes of motion, translation, 

rotation and vibration, each of which contributes to the temperature.  It turns out that the rate of 

cooling for each of these motions is different, with translation fastest and vibration slowest.  As a 

result, when cooling stops, the amounts of translational, rotational and vibrational motion will each 

correspond to a different temperature, with the translational temperature the lowest and the 

vibrational temperature the highest.  The fact that different motions of the gas yield different 

temperatures makes it impossible to assign an unambiguous temperature to the gas. 

You should all be familiar with the most common temperature scales, Fahrenheit, Celsius, 

and Kelvin.  The Kelvin scale has two other important names.  One is the ideal gas scale.  The 
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name comes from the fact that most gases, if used as fluids for thermometers, give very similar 

heights for the same temperatures, unlike most liquids.  If the gases used are at sufficiently low 

pressures, then the heights are identical.  Under conditions where gases show identical behaviors, 

they are called ideal gases.  Note that this definition of ideal gases is phenomenological, based on 

the behavior of the gas.  In addition, note that the identification of a gas as ideal is conditional – 

under some sets of conditions the gas will behave as an ideal gas, while under other conditions the 

behavior is different.  This implies that under the right conditions, ANY gas can be ideal. 

The other name is the thermodynamic temperature scale.  It is called this because the 

Kelvin scale can be derived from considerations about a thermodynamic state function called the 

entropy.  The only correct temperature scale for use in most thermodynamic calculations is the 

Kelvin scale. 

We now turn to Equations of State.  In discussing Equations of State we’ll be asking the 

question, “Are state variables independent, or is there a relationship between them?” So far, we've 

talked about several state variables.  For pure gases, pressure, volume, and temperature are all 

properties of a system.  Generally, we can vary both pressure and volume independently.  In other 

words, for a given system with constant mass, you can simultaneously set it to any p and any V. 

Each property of a system that can be varied independently is called a degree of freedom.  Now 

suppose you place this system in thermal equilibrium with another system.  You will now find that 

for each pressure there is only one possible volume and vice versa.  Now only one of the two 

variables can be varied independently.  Thus when we take our gas and subject it to a thermal 

equilibrium, the number of independent variables is reduced by one.   

Another way of saying that the system is in a state of thermal equilibrium is to say that we 
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are holding the temperature constant. Q. WHY IS THIS EQUIVALENT?  When we hold the temperature 

constant, we find that for every p there is only one V.  Similarly, we find that if we hold the volume 

constant, you will find only one p for every T, and if we hold the p constant there will be only one 

T for every V.  We can express these statements mathematically as  

Φ(p, V) = T 

Χ(p, T) = V 

and Ψ(V, T) = p, 

where Φ, Χ, and Ψ are different functions of the respective variables.  The first equation simply 

says that there is some function of p and V that yields the temperature T, and so on.  These 

equations, which relate the values of state variables, are called equations of state.  All gases can 

be described by such equations, although the exact equation depends on the identity of the gas and 

the conditions. 

You are all familiar with at least one equation of state, the ideal gas law, which holds for 

most gases under conditions of low pressure and moderate temperatures.  The ideal gas law is  

pV = nRT, 

 where R is the gas constant, with a value of 8.314 J K-1 mol-1. The value of R in several other units 

is given in your book, the other most commonly useful value being R = 0.08206 L atm mol-1 K-1.  

You can see that the ideal gas law satisfies each of our above equations, since we can write pV/nR 

= T, nRT/p = V, etc.   

The effect of an equation of state is that it allows us to reduce the number of state 

variables we need to use to describe a system.  Even though four or more state variables can be 

found to describe a pure gas, when we know the equation of state, knowing only three is enough 
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to set the values of the others. They also allow us to see the way in which the variables depend on 

one another. 

We can draw two major conclusions from this discussion.  First, Equations of State are 

useful because they allow us to relate different state variables and limit the number that we need 

to know.  Second, if we apply a constraint to our system, like holding a variable constant, it restricts 

the number of ways that the state variables can vary. 

I said earlier that for the simplest systems very few variables are required to describe the 

system.  A logical question to ask at this point is how the situation changes when we consider a 

more complex system.  A relatively simple example of a more complex system is a mixture of 

non-reacting gases.  If we are going to describe mixtures of gases, we need more variables to 

describe the system, particularly variables that describe the composition of the mixture.  The most 

typical variables that are used to describe composition are pi, the partial pressures, which are the 

pressures exerted by the individual components in a gaseous mixture, and ni, the number of moles 

of the various components.  The description of mixtures can be simplified for ideal gases by 

Dalton's law of partial pressures, which you were first introduced to in General Chem.  It says that 

for a component i, p n RT
Vi
i= .  In other words, for an ideal gas the pressure exerted by a gas in a 

mixture is the same that the sample would exert if it were the only gas in the container.  The total 

pressure is related to the partial pressures by  

p = p1 + p2 + p3 + ... , 

where pn indicates the partial pressure of the nth component of the mixture.  If we combine this 

equation with Dalton’s law, we get  
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p n RT
V

n RT
V

n RT
V

RT
V

n nRT
Vi

i

= + + + = =∑1 2 3 ... , 

where n is the total number of moles of gas in the mixture.  So we see that for a mixture of ideal 

gases the ideal gas law still holds, as long as n represents the total number of gaseous moles.  We 

can use this result to rewrite our equation for partial pressure, p n RT
Vi
i= , by noting that RT

V
p
n

=

, and substituting to obtain 

p n
n

pi
i= . 

The quantity ni/n is extremely useful and is given the special name of mole fraction, symbolized 

by Xi.  From the definition of the mole fraction we can see that Xi
i
∑ = 1. It turns out that for 

many non-ideal mixtures, the mole fraction is the description of the composition that we will find 

most useful.  For these same non-ideal mixtures, Dalton's law will not hold.  This means that we 

need a more general definition of partial pressure.  The general definition is 

 pi = Xi p, 

where pi and Xi are the partial pressure and mole fraction of the ith component of the mixture.  The 

generality of the definition is due to the fact that there are no assumptions of ideality in the 

definition of the mole fraction. 

 Note that whether we are using partial pressures, moles or mole fractions to describe our 

composition, that we need to add an additional n-1 variables to describe systems containing n 

components. WHY IS IT N-1 INSTEAD OF N? 
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Lectures 3 and 4 

Last time we talked about equations of state, and as one example, discussed the ideal gas 

equation of state.  In general chemistry, we tend to limit our discussions to simple systems such as 

ideal gases.  However, one of the real strengths of thermodynamics is that it can, with relative 

simplicity, make predictions about real chemical systems.  Therefore, our questions for today have 

to do with non-ideal systems, how they differ from ideal systems and how these differences can 

be expressed mathematically.  

When we talked last time about using gases as a fluid for thermometry, we pointed out that 

when the pressure was low and the temperature was high all gases behaved identically.  We 

called gases under these conditions ideal gases.  If the temperature is sufficiently high and the 

pressure is sufficiently low all gases will obey the ideal gas law.  However, under the great 

majority of conditions a gas will not follow the ideal gas law.  There is evidence for non-ideality 

all around us.  One way to see this is that the ideal gas law predicts that as we lower temperature, 

a substance will remain a gas all the way until a volume of zero is obtained.  It is our common 

experience that this does not happen but that at some sufficiently low temperature the substance 

will liquefy and that the volume of this liquid will not reach zero at a temperature of zero Kelvin. 

This is a dramatic example of real gas behavior, but non-ideal behavior occurs over conditions far 

away from the condensation temperature as well.   

A useful measure of non-ideal behavior is called the compressibility factor, Z.  This is 

defined as pVm/RT.  This is a useful quantity because it clearly indicates ideal behavior, since for 

all ideal gases pVm/RT will be one.  For real gases the compressibility factor will not be constant 

at one but will change as the pressure and temperature change.  If, at a given temperature and 



 
 

17 

pressure, the gas is easier to compress than an ideal gas, the compressibility factor will be less than 

one, and if it is harder to compress than an ideal gas its compressibility factor will be greater than 

one.  A typical plot of Z vs. p for a real gas looks like this. 

 

 

 

 

Note that at very high pressures, say 400 atm and above (note that these pressures are different for 

each gas), a typical real gas will have a compressibility factor greater than one, i.e. at this point it 

is harder to compress than an ideal gas.  As pressure is reduced the compressibility factor decreases 

until at pressures around 200 atm it drops below one, i.e., is easier to compress than an ideal gas.  

When the pressure gets very low, Z approaches the ideal gas value of 1. 

When you do good science, you shouldn't stop at the most obvious conclusion that you can 

draw from your data, but should continue to mine the data until all solid conclusions, and all 

evidence-based speculations about the meaning of the results have been extracted.  So in addition 

to telling us the ease of compressibility of real gases as a function of pressure, the way that Z 

depends on pressure tells us something of the intermolecular forces between our molecules and 

the scale of distance at which they act. Real gases are harder to compress than ideal gases at high 

pressures.  Q:   WHAT KIND OF FORCES WOULD MAKE IT HARDER TO COMPRESS A GAS?  WHAT 

HAPPENS TO THE DISTANCES BETWEEN MOLECULES AS WE INCREASE PRESSURE?  SO WHEN THE 

PRESSURE IS HIGHEST WHAT CAN WE SAY ABOUT THE DISTANCES BETWEEN THE MOLECULES IN OUR 

GAS?  Therefore we conclude that when distances between molecules are short, repulsive forces 
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dominate between molecules. 

AT INTERMEDIATE PRESSURES, REAL GASES ARE EASIER TO COMPRESS THAN IDEAL GASES.  

WHAT TYPES OF FORCES MAKE IT EASIER TO COMPRESS A GAS? WHEN PRESSURES ARE 

INTERMEDIATE WHAT CAN WE SAY ABOUT THE DISTANCES BETWEEN OUR MOLECULES?  Therefore 

we can conclude that at intermediate distances attractive forces dominate.  To continue this line of 

reasoning, we see that at low pressures and therefore long distances, there is no deviation from 

ideality and therefore, neither attractive nor repulsive forces are strong enough to make a 

difference.  Since both attractive and repulsive forces are negligible, we also conclude that as 

pressures approach zero, gases behave ideally. We see from this analysis that just by looking at 

something as simple as the pVT behavior of a gas we can learn something about its intermolecular 

forces. 

The plot of compressibility versus pressure depends on the temperature.  If we plot Z vs. p 

at several temperatures we see that each has a different shape, as below. A curve like these in 

which some property is studied at constant temperature is called an isotherm. 

 

 

 

There is one temperature called the Boyle temperature, where Z = 1 over a wide range of 

pressures, and therefore the behavior of the gas is most nearly ideal.  This happens because at the 

Boyle temperature the attractive and repulsive forces are balanced and cancel each other. 

When we get to real gases, it becomes much harder to understand all of the interrelations 

between the state variables.  For ideal gases, this is pretty easy, because in the ideal gas equation 
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the relationships between the variables are all simple. However, even for this simple equation, the 

relationship between these variables is impossible to reduce to an equation with one independent 

variable.  This is important because we most easily understand the relationship between one 

independent variable and one dependent variable.  We all can easily understand a graph of this 

sort.  Unfortunately, it’s much harder to comprehend a graph that simultaneously shows the 

relationship between three or more variables.  So for a three variable system, we tend to hold one 

variable constant, and look at the interaction of the other two.  This is a common and important 

procedure in physical chemistry, where we often deal with very complex systems with large 

numbers of variables.  In order to comprehend the relationships in these complex systems we tend 

to deal with them two at a time, but holding all other known variables constant.  The analysis is 

then repeated for all other independent variables.  However, it’s important in these analyses to be 

intensely aware of the variables being held constant, or incorrect conclusions will be drawn from 

the individual graphs. 

In thermodynamics, graphs with certain variables held constant have special names.  We've 

already identified graphs where the temperature is held constant as isotherms.  If pressure is held 

constant we call the equation or graph an isobar.  The weather maps that you see on TV or on 

weather apps are examples of isobars.  If we hold volume constant, the graph is called an isochore. 

Each of these graphs which hold one variable constant are essentially slices through a four 

dimensional diagram which represents the full relationship between the three variables. 

One of these graphs, the slice that looks at p as a function of T, is an isochore, and is  
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simply the phase diagram that you learned about in general chemistry.  It has regions 

corresponding to gas, liquid, and solid phases, and lines at which the two phases are in equilibrium.  

There are two noteworthy points, the triple point, at which all three phases are in equilibrium, and 

the critical point.  The critical point is significant because at temperatures above the critical 

point it is no longer possible to condense a gas.  At the critical point itself, matter has strange 

properties that are not yet completely understood.  One of them is an anomalous tendency to scatter 

light, called critical opalescence.  At the critical point, there is a unique set of critical properties, 

the critical temperature, Tc, the critical pressure, pc, and the critical volume Vc .  In other words, 

just as there is only one triple point for a pure substance, there is only one critical point. 

 

 

 

 

 

A second slice, a series of isotherms for which temperature is held constant and we vary 

volume and pressure, may be less familiar to you.  Consider an isotherm at a relatively low 

temperature.  As we decrease the volume the pressure increases slowly until we reach a plateau at 

which the compression can continue without the pressure increasing. [CAN ANYONE TELL ME 

UNDER WHAT CONDITIONS VOLUME CAN DECREASE WITHOUT THE PRESSURE INCREASING?  WHY 
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DOES THIS HAPPEN?] The beginning of the plateau is the point at which the gas starts condensing.  

Note that the beginning of condensation is physically marked by the appearance of an observable 

phase boundary in the sample.  Condensation continues with continued compression until all the 

gas has been converted to liquid.  At this point any further compression results in a sharp increase 

in pressure.  As we increase the temperatures for isotherms at temperatures below the critical 

temperature the length of this plateau will decrease. At the critical temperature, the p-V isotherm 

does not have a plateau indicating condensation, rather, there is an inflection point in the curve.  

At temperatures above the critical temperature, the curve varies smoothly, with no discontinuities 

and no inflection points. 

Gases at temperatures and pressures beyond the critical point are called supercritical fluids.  

Originally of interest purely for reasons of scientific curiosity, they are an area of active 

investigation both in applied and basic chemical research.  Applications range from use of 

supercritical CO2 as an environmentally friendly dry-cleaning fluid, to use of supercritical CO2 as 

a non-toxic decaffeinating agent for coffee beans. 

The graphs of real gas behavior give us qualitative information about the way that real gas 

properties change under various conditions, but it is also necessary to have more quantitative 

information about the states of real gases.  We will introduce two equations of states for real gases, 

an empirical one called the virial equation of state, and a (sort of) theoretical one called the van 

der Waals equation. 

The empirical approach is based on the compression factor, Z = pVm/RT.  Remember that 

this factor has a low-pressure limit of one, but deviates at higher pressure.  It would be nice if we 

could convert the experimental information in an isotherm of the compression factor into an 
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equation.  Remember from Calculus, that a curve that deviates slightly from a known line can be 

reproduced by a Taylor Series, an infinite series expansion of the function.  Since most of the 

isotherms represent relatively small deviations from ideal gas behavior, we can write the 

compression factor as an infinite series expansion in one of the variables.  Historically either p or 

1 / V are chosen as the expansion variables.  If  1 / V  is chosen as the expansion variable, we obtain 

the following equation: 

pV
RT

= + B
V

+ C
V

+...1 2 . 

Since this equation relates p, Vm and T, it is an equation of state for real gases.  Alternatively, 

one may choose pressure as the independent variable and write 

pV
RT

= + B p+ C p +...1 2' ′  

where the constants B and B’ and C and C’ are related by the equations 

B B
RT

'=  and C C B
R T

' ( )
=

− 2

2 2 . 

These expansions are different forms of what is called the Virial Equation of State.  The 

coefficients B, C, etc. are called Virial Coefficients.  The virial equation is an empirical equation 

of state.  (Remember here that empirical is just a fancier word for experimental.) It is obtained by 

taking an experimental isotherm, and varying the values of B, C and so on, until the equation 

reproduces the experimental isotherm to within experimental error.  The virial equation is used for 

all p-V-T calculations that require a high degree of accuracy.  Virial coefficients for some gases 

may be found in your book, and many others can be found in the literature or in various handbooks 

such as the CRC, Lange's Handbook of Chemistry or the multi-volume International Critical 
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Tables. (The International Critical Tables, while long out of print, can be found in pdf form here: 

https://www.nap.edu/catalog/20230/international-critical-tables-of-numerical-data-physics-

chemistry-and-technology) 

Remember that we get a different graph of Z vs. p for each temperature.  Thus for each 

different temperature, it is necessary to obtain a different set of virial coefficients.  An interesting 

case that results from this is that there is always a temperature at which the second virial 

coefficient, B or 'B , is zero.  This is the Boyle temperature we mentioned earlier, the temperature 

at which a gas resembles an ideal gas for the widest range of temperatures and pressures.  Each 

gas will have a different Boyle temperature. 

The virial equation is an empirical equation of state.  It tells us only what the behavior of a 

gas is at a certain temperature, but gives us no insight into why this behavior is observed.  It would 

be useful to find a theoretical equation of state which is valid for real gases, and which yields 

insights into both the nature of gases in general and the nature of the specific gases under study.  

Let’s try to do this by modifying the ideal gas law to account for intermolecular interactions. 

As we mentioned in our discussion of the pressure dependence of Z, there are two broad 

types of interactions, attractive and repulsive.  Our model needs to include both, because both are 

operating at all times.  Let’s begin with the repulsive interaction.  The simplest model for the 

repulsive interaction is the hard sphere model.  A hard sphere is a particle with no attractive force, 

and a repulsive force that is zero outside of the radius of the sphere, and infinite at the radius of 

the sphere (think of a billiard ball as a model of this).  If a gas of hard spheres is fully compressed,                 

https://www.nap.edu/catalog/20230/international-critical-tables-of-numerical-data-physics-chemistry-and-technology
https://www.nap.edu/catalog/20230/international-critical-tables-of-numerical-data-physics-chemistry-and-technology
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1 - The Potential Energy Function for A Hard Sphere 

it takes up a volume proportional to its mole number.  Therefore a gas of hard spheres has less free 

volume for the motions of its component particles than a gas whose particles have no repulsive 

forces.  This suggests that we replace the molar volume in the ideal gas law with the term V -b , 

where b is proportional to the volume taken up by a mole of gas particles. 

Now let’s add attractive forces, and consider their effect on pressure.  The pressure a gas 

exerts depends both on the frequency of collisions in a gas and on the force of these collisions. 

Let’s consider the effect of density, 1 / V , on both of these factors.  We know that over a wide 

range of distances attractive forces get stronger as particles get closer, which is the same as saying 

that their density increases.  The effect of these attractive forces is to decrease the pressure of the 

gas, since the attractive forces decrease both the frequency and the force of collisions with the wall 

of the container.  The correction term is therefore negative.  If we want to figure out the actual 

dependence on the density, we should once again turn to a potential energy function.  It turns out 

that for neutral molecules, the potential energy of attraction is proportional to 1/r6, where r is the 
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distance between molecules.  Notice that ( )2
1/V  also has dimensions of 1/r6, which suggests that 

the attractive portion will be proportional to the density squared and will have the form 2

a
V

− , 

where a is a proportionality constant.  Taken together, the correction terms yield the Van der Waals 

equation,  

2

RT ap = -
V - b V

 

The constants b and a are different for each gas (and must be determined experimentally for each 

gas. Thus the van der Waals equation, while based on theoretical arguments, is more properly 

termed a semi-empirical equation).  The equation matches experiment over a wider range of p, Vm 

and T than the ideal gas law, a partial vindication of its theoretical insights.  However, isotherms 

of the equation below the critical temperature yield wavy lines called van der Waals loops at 

pressures and volumes where condensation occurs.  While this may not seem to be very realistic, 

remember that the ideal gas law shows no condensation behavior at all, so the van der Waals 

equation is a serious step forward, and in fact the van der Waals loops can be used to construct an 

isotherm which comes close to modeling the true behavior. 

 It is important to note that the van der Waals equation is not the only theoretical equation 

of state that has been proposed for real gases.  Two others are the Berthelot and Dieterici equations 

of state.  The Berthelot equation of state is  

2

RT ap
V b TV

= −
−

, 

while the Dieterici equation is 
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/a RTVRTep
V b

−

=
−

. 

Note that the qualitative meaning of the parameters a and b are the same for these two equations 

as in the van der Waals equation.  Both of these equations are superior to the van der Waals 

behavior, since they include the temperature dependence of the attractive forces.  Neither 

includes a more sophisticated treatment of the repulsive forces.  Of the three equations the 

Dieterici equation performs the best, but still tends to give good results only for gases with low 

polarity. 

I'd like to take a bit of time here to cover some math that we'll need in the next chapters.  

We’ll begin by covering the basics of partial differentiation. Partial derivatives are tools you use 

to determine slopes and rates of change of observables that depend on more than one independent 

variable.  Essentially all they amount to is taking a derivative of a multivariate function one 

variable at a time.  Suppose you have a function f(x, y) which depends on two variables, like  

 f = x2 + 2xy2 + y2. 

Since the function is a function of two variables we have two different first derivatives, with 

respect to the independent variables x and y, which are symbolized by 
y

f
x
∂ 

 ∂ 
 and 

x

f
y

 ∂
 ∂ 

.  These 

are read as the derivative of f with respect to x at constant y and the derivative of f with respect to 

y at constant x.  The descriptions actually tell us exactly how to take partial derivatives.  We merely 

treat all independent variables except the one we are interested in as constants, and then take the 

derivative.  So to take 
y

f
x
∂ 

 ∂ 
, we treat all the y's in our function as constants and take the derivative 

with respect to x as we normally would.  Let’s take the derivative of our function with respect to 
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x term by term.  [Ask for each term]  This yields 2

y

f = 2x+2y
x
∂ 

 ∂ 
.  Now let’s take the derivative 

with respect to y.  [Ask for terms]  This yields 
x

f = 4xy+2y
y

 ∂
 ∂ 

.  So once again, to take partials 

you merely treat all variables except the one you are differentiating as constants. 

Examples - 1)  w ex y z= + +2 3 .  What are 
,y z

w
x

∂ 
 ∂ 

,
,x z

w
y

 ∂
 ∂ 

, and 
,x y

w
z

∂ 
 ∂ 

? 

2)  Let p V T RT
V b

a
Vm

m m

( ), =
−

− 2 .  What is 
mV

p
T

∂
∂

 
 
 

?  [R/(Vm-b)]  What is 
m T

p
V
∂
∂

 
 
 

?   

[-RT/(Vm - b)2 +2a/Vm
3]. 

What if we wanted to calculate (∂T/∂p)Vm?  One way would be to rewrite our van der Waals 

equations so that T is a function of p, but that would be tedious.  Fortunately, there is a rule of 

partial derivatives called the inverter, which says that 
zz

x y= 1/
y x

 ∂ ∂ 
   ∂ ∂  

.  This means that 

(∂T/∂p)Vm = 1/(∂p/∂T)Vm = (Vm-b)/R. 

 Another new thing about partial derivatives is that we can take four different second 

derivatives.  Two of them, ∂2z/∂x2 and ∂2z/∂y2, are similar to second derivatives you've seen 

before.  However, we now have two mixed partial second derivatives, 
2 2z zand

x y y x
   ∂ ∂
   ∂ ∂ ∂ ∂   

. The 

meaning of the first is that you first take the partial of z with respect to y, and then second with 

respect to x, while in the second you take the partial of z with respect to x first and the partial 

with respect to y second.  A result about these mixed partial derivatives that we will use 



 
 

28 

frequently is that the two mixed partials are always equal, i.e., 
2 2z z=

x y y x
   ∂ ∂
   ∂ ∂ ∂ ∂   

.  We can 

illustrate this for the van der Waals equation, by evaluating the partials 
2

m

p
T V

 ∂
 ∂ ∂ 

 and 
2

m

p
V T

 ∂
 ∂ ∂ 

.  We have already taken the two first derivatives, getting 
mV m

p R=
T V - b
∂ 

 ∂ 
 and 

2 3( )m m mT

p -RT 2a= +
V V b V

 ∂
 ∂ − 

.  To take the second derivative
2

m

p
T V

 ∂
 ∂ ∂ 

 we take the partial 

derivative with respect to T of 
m T

p
V

 ∂ 
 ∂ 

 getting 

 2 3 2( ) ( )m m m m

p -RT 2a -R= + = .
T V T V b V V b
   ∂ ∂ ∂
   ∂ ∂ ∂ − −   

 

Similarly, to take the second derivative
2

m

p
V T

 ∂
 ∂ ∂ 

 we take the partial derivative with respect 

to Vm of 
mV

p
T
∂ 

 ∂ 
, getting 

 2( )
mVm m m m

p R -R= = .
V T V V - b V b

 ∂ ∂ ∂ 
  ∂ ∂ ∂ −   

 

 As the rule predicts, the mixed partials are equal. 

Another result that is extremely useful is the chain rule for partial differentiation.  You 

should all be familiar with the chain rule from your calculus course.  It says that if you have a 

function z = f(y), where y = y(x), then dz
dx

= dz
dy

dy
dx

.  Notice that the dy's in this expression cancel 

to give dz/dx.  For partial differentials the chain rule is stated as follows.   Suppose you have a 
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function z = z(y1, y2)  where y1 = f1(x1, x2) and y2 = f2(x1, x2).  Then 

 
2 2 2 1 2

1 2

1 1 1 2 1x y x y x

y yz z z= +
x y x y x

         ∂ ∂∂ ∂ ∂
         ∂ ∂ ∂ ∂ ∂         

. 

Notice that once again, the y terms sort of cancel.  For compound functions, this is useful just as 

the chain rule was, but the main advantage of the chain rule in our course is that it allows us find 

useful relations between changes expressed as partial derivatives. 

One of the goals of equilibrium thermodynamics is to be able to predict what will happen, 

not just for ideal systems but for real systems.  As such, we need to develop a series of measurable 

quantities that are useful in describing a wide range of systems, real and ideal, solid, liquid and 

gas.  Two particularly useful quantities, which are defined in terms of partial derivatives, are the 

cubic expansion coefficient, α ≡ 
p

1 V
V T

∂ 
 ∂ 

 and the isothermal compressibility, 1

T

V
V p

∂κ
∂

 
≡ −  

 
.  

[ASK FOR INTERPRETATION IN WORDS.]  These are convenient because they are easy parameters to 

measure, describe real, not just ideal, characteristics of materials and are commonly tabulated.  

Later in the course one of our goals will be to express thermodynamic quantities that we are 

interested in in terms of these two partials and other quantities that are easily measured or 

commonly tabulated. 

One last manipulation of partials for today.  There is a neat rule called the cyclic rule.  

Suppose you have a partial, 
z

x
y

 ∂
 ∂ 

.  Then you can write 1
x yz

x y z =
y z x

 ∂ ∂ ∂    −     ∂ ∂ ∂    
.  Let’s use this 

to evaluate the partial derivative 
V

p
T
∂ 

 ∂ 
for an arbitrary real substance.  According to the cyclic 
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rule, 1
V p T

p T V
T V p

∂ ∂ ∂
∂ ∂ ∂

     = −    
     

.  We can rewrite this as  

1
V

p T

p
T T V

V p

∂
∂ ∂ ∂

∂ ∂

−  =      
      

 

From our definition above, (∂V/∂p)T= -Vκ and (∂T/∂V)p = 1/(Vα), so as our final answer we get 

V

p
T

∂ α
∂ κ

  = 
 

. 


